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Abstract

This paper is concerned with the dynamics of an elastic bar that can undergo
reversible stress-induced phase transformations. We consider a Riemann problem
in which the initial strains belong to a single metastable phase and prove uniqueness
of solution that satisfy a nucleation criterion and a kinetic law at all subsonic and
sonic phase boundaries. This paper generalizes the results of [3]; the authors of [3]
considered a piecewise linear material for which no wave fans exist, shock waves
always travel at the acoustic speed and shock waves are dissipation-free. The
material model of the present paper does not suffer from these degeneracies.

1. Introduction. In the simplest one-dimensional theory describing the longitudi-

nal motions of an elastic bar, one employs a pair of conservation laws associated with

momentum balance and kinematic compatibility. When the motion of the bar involves a

propagating strain discontinuity, it is subject to a pair of jump conditions associated with

these conservation laws. In addition, the second law of thermodynamics requires that the

dissipation associated with the moving discontinuity be non-negative, a condition usually

referred to as the entropy inequality.

The character of the material of the bar enters the conservation laws and jump con-

ditions through the stress-strain relation o = &(7). If the material of the bar is such that

stress is a monotonically increasing function of strain that is strictly convex or strictly

concave, then phase transformations cannot occur. and all propagating discontinuities

are shock waves. For a bar made of such a material, it follows from a result of Oleinik

[14] that the Cauchy problem for the associated field equations and jump conditions has



at most one piecewise smooth solution that fulfills the entropy inequality; see [131 for a

discussion of Oleinik's theorem and related results.

When the material can undergo a reversible, or thermoelastic, phase transformation,

the one-dimensional elastic continuum can be characterized by a ron-monotonic relation

a = &(I) between stress and strain, or equivalently by a nonconvtx elastic potential

W(jy). Typically one encounters a stress response function &(-I) in which stress first

increases with increasing strain, then decreases, and finally increases again; for example.

Ericksen [10]. The rising branches of such a stress-strain curve are identified with different

phases of the material, while the declining branch is associated with an "unstable phase."

For suitable value of stress, the associated potential energy G('.,a) = W('7) - a-y has

multiple energy-wells, each energy-well being associated with a distinct phase of the

material. During a typical thermomechanical process, the material often moves from

one energy-well to another, or equivalently, from one branch of the stress-strain curve to

another.

When the stress-strain curve is non-monotonic and undergoes a change in the sign of

its curvature, the Cauchy problem need no longer have a unique solution, even with the

entropy inequality in force; see the remarks of Dafermos [9]. In order to secure unique-

ness, many researchers have replaced the entropy inequality with various "admissibility

conditions" which are to be satisfied by the weak solutions. For example, two different

notions of maximum entropy production have been proposed by Dafermos [8], and aug-

menting the elastic theory with viscosity and capillarity effects has been proposed by

Slemorod [15], Truskinovsky [17]. The implications of these criteria for dynamic phase

transitions have been examined by, for example, Hattori [11], James [12] and Shearer

[16].

A completely different approach has been proposed and studied in [2-5] based on the -

observation in [1] that the lack of uniqueness arises not only in dynamic motions, but

in quasi-static motions as well. It was suggested in [2] that in addition to the usual

constitutive law between stress and strain, further material description in the form of a

it' , !



nucleation criterion and a kinetic relation pertaining to the phase transitions are needed.

The importance of a nucleation criterion and a kinetic relation in the description of

phase transitions in solids has long been recognized in the materials science literature.

e.g. Christian [7].

It was shown in [2] that the inclusion in the continuum theory of the nucleation crite-

rion and the kinetic relation leads to a determinate quasi-static theory whose predictions

are in qualitative accord with experiments on shape memory alloys that involve slowly

propagating phase boundaries. A similar result in the dynamical setting for the Rie-

mann problem for a special piecewise linear elastic material was established in [3]]. It was

shown in [4,5] that the maximum entropy rate admissibility criterion and the viscosity-

capillarity admissibility criterion may in fact be viewed as being two particular examples

of kinetic relations.

The study in [3] was restricted to a piecewise linear elastic material. The nature of

this trilinear material model leads to a considerable simplification in the analysis. First.

this material does not sustain wave fans. Second, shock waves always travel at the sound

speed. Third, shock waves are dissipation-free. For these reasons. it is natural to question

whether the results found in [3] were special to the trilinear material and inquire whether

its conclusions hold for more general rising-falling-rising stress-strain curves. Th,'- is the

objective of the present paper. We show for a material whose rising-falling-rising stress-

strain curve is smooth and has a single inflection point, that the nucleati'-n criterion and

the kinetic relation (applied to all subsonic and sonic phase boundaries) serve to single

out a unique solution to the Riemann problem with initial data ;n a single, metastable

phase. If the kinetic law is applied only to phase boundarie's that are subsonic and

not to those that are sonic, we do not have uniqueness of solution for all initial data.

Truskinovsky [18] takes the view that the kinetic rela, ion should not be applied to sonic

phase boundaries and that the accompanying non-uniqueness is an instability.

After dealing with various preliminary is-lies in Sections 2-4 we turn, in Section 5,

to deduce the general solution forms to the Riemann problem that are consistent with
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the entropy inequality. In Section 6 we explicitly construct all solutions to the Riemann

problem corresponding to initial data with strains in the low-stain phase: the results are

summarized, and the nature of the associated non-uniqueness characterized, in Section

7. Finally in Section 8 we introduce the nucleation criterion and the kinetic relation.

thus leading to uniqueness.

2. Background. Consider longitudinal motions of an elastic bar that is regarded

as a one-dimensional continuum with unit cross-sectional area. The motion of the bar

is assumed to take place isothermally. During such a motion, the particle at x in the

reference configuration is carried to x+u(x, t) at time t, where u(x, t) is the displacement.

The displacement is assumed to be continuous with piecewise continuous first and second

derivatives throughout the regions of space-time to be considered. The strain and particle

velocity are defined by -y = u, and v = ut at points (x, t) where the derivatives exist.

Necessarily, -y(x, t) > -1 in order to ensure that the mapping x--+x + u(x, t) is invertible

at each instant t. The stress a(z, t) is related to the strain through

a = &(-y), (1)

where & is the stress response function of the material. At points where -) and v are

smooth, balance of momentum and kinematic compatibility require that

= pvi, vX = - Y, (2)

where the constant p is the mass density in the reference configuration. If there is a

moving discontinuity at x = s(t), the following jump conditions must hold:

=-P (V- V), (V+- V) =)(3)

+

where for any function g(z, t) we write 9 = g(s(t)±, t) for the limiting values of g on

either side of the discontinuity.

Consider the motion of the piece x, _< x < x2 of the bar during a time interval [t], t23.

Suppose that -y and v are smooth on [xi, x2 l] x [ti, t2] except at the moving discontinuity
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x = s(t). Let E(t) be the total mechanical energy at time t associated with this piece of

bar:

1 )=(4)
E(t) = [2 [ W(-(xt0) + I-p'!(x, t)I]dx.

where W('-) is the strain energy per unit reference volume of the bar, i.e.

S= &()dE, > -1. (5)

The following work-energy relation can be readily established:

r(x2, t) v(x 2, t) - o(x, t) v(x, 0t) - E(t) = f(t) (t), (6)

where the driving force (or driving traction) f(t) acting on the strain discontinuity is

defined by

f = f(i, 'O) j &(y)d -!(() + &(7))(' - 7). (7)

2

Note that f may be interpreted geometrically as the difference between the area under

the stress-strain curve between -y =7 and - =• and the area of an associated trapezoid

having the same base. The right-hand side of (6) represents the instantaneous dissipation

rate due to the moving discontinuity and the requirement that it be non-negative implies

that

f(t)M(t) Ž 0. (8)

Under isothermal conditions, the inequality (8) is a consequence of the second law of

thermodynamics.

A motion of the bar is governed by the field equations (2) at all points of smoothness,

and the jump conditions (3) and the entropy inequality (8) at all discontinuities.

3. Material. Shock waves and phase boundaries. In this paper, we consider a

material whose stress response function &(-y) is twice continuously differentiable with &

first increasing with increasing -y, then decreasing, and finally increasing again as shown
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in Figure 1. More specifically we suppose that there are three iumbers M , and ,

with 0 < "th < -it < 1, such that

> 0, -1 < -Y < Y'M.

= 0. = IM,

Y'(-) < 0, Im < -Y < 1•., (9)

=0, =

> 0, "> m,

and

S< 0, -1 < < "m,

&"(-Y) =0, 1 =-i, (10)

> O, -7 > "Tin.-

Moreover, we suppose that &(0) = 0 and that

&(-t) -00, & -Y)-0 as - -4-1; (11)

&(-Y)= o.-I+aT+o(1) as - --- oc, (12)

where po(> 0) and aT are constants. The stress-strain curve therefore consists of three

branches, two of which are rising, while the other is declining; it has a single inflection

point at the strain-level y = -yi, and is asymptotic, at large tensile strains, to the straight

line a = /7Y + aT. It is useful for later purposes to note that there are two unique values

of strain R,, and P.. such that

p4Roo + rt = &(R.), &'(Poo) = p•, where -1 < R,, < P, < 7M; (13)

Rýo is the strain-level at which the asymptote a = Awo7 + OT intersects the first branch

of the stress-strain curve, while P,, is the value of strain on the first branch at which the

slope equals the slope of this asymptote. Certain other material parameters are defined
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in the figure. In particular, the Maxwell stress ao is the stress-level for which the two

hatched areas of Figure 1 are equal.

We shall say that a particle of the bar labeled by x in the reference state is in the

low-strain phase, the "unstable phase" or the high-strain phase at time t during a motion

if -y(x, t) lies in the respective intervals (-1, M],(',. or [ m,,Oc). At a moving

discontinuity x = s(t), the jump conditions (3) imply

p2= •• &0) (>0).

A discontinuity is called either a shock wave or a phase boundary according to whether

and I both lie in the same phase or in distinct phases. The sound speed of the material

at a strain -y is defined by

S= 1,(-y)(15)
V p

where it is necessary that -y in (15) not belong to the unstable phase. Let c, = /p.

Let c = c('Y) stand for the iound speeds on the two sides of a discontinuity. The prop-

agation speed ,4 of the discontinuity is said to be subsonic if .hi <-c and c, intersonic if
++c< 1ý1 <+c or c< .ý1 <4c, and supersonic if I.1 >ý and +.

We shall speak of a low-strain shock wave and a high-strain shock wave according to

whether the strains 1, both belong to the low-strain phase or to the high-strain phase.

For the material (9)-(12) considered here, it can be readily seen that all shock waves are

intersonic. Moreover, it follows from (7) and (9)-(12) that the entropy inequality (8)

holds at a shock wave if and only if

Low-strain shock: I<+ if- < O, (16)
f<7 if ý< 0,

if< if 0, (17)
High-strain shock: + if- > (7

IY>-/ if ý< 0.

This implies in particular that a shock wave always moves into the phase whose sound

speed is smaller than the speed IkI of the shock wave.
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Turning next to phase boundaries, we will show in the next section that a phase

boundary for which either Y or I is in the unstable phase cannot arise in the problem+

to be considered here. Thus suppose that I belongs to the high-strain phase and I to

the low-strain phase. In the 1, I-plane, the set of all pairs (I, I) for which Y is in the

high-strain phase, f is in the low-strain phase and the right side of (14) is non-negative

is represented by the union F of the hatched regions in Figure 2; it is the region bounded
+ ++

by the lines i= -1,If= IM,•= Im and the curve &(('-) = t(7). The region P of the

I, I-plane will play a major role in the analysis that follows in the next sections. The

boundary segment E is defined by

+" % ( (18)

where the material parameters -to and -yn are defined in Figure 1. By (14), A = 0 at

points on E and so this segment represents instantaneously stationary or equilibrium

states of the phase boundary. One can verify that T'(I) > 0 for I," < -y < I'o and that

T'(-m) = 0, T'(Iy) = oo; the curve E therefore rises monotonically as IY increases. Next,

consider the curve F which is defined as the set of points (', 7) at which the driving force

1+I) introduced in (7) vanishes:

.F: fy+) = 0 ý* += Q(-y), 7 ŽY3, (19)

where the material parameter j'03 is defined in Figure 1. One can verify that Q'('Y) < 0

and that Q(I) -'+ Ro, Q'(-y) --* 0 as -y -- oo where P, is the value of strain defined

previously in (13). The curve F therefore declines monotonically as I increases as shown

in the figure. In view of (8), a phase boundary associated with a point on I propagates

without dissipation. Sincef(i", Y) > 0 above F, the entropy inequality indicates that

A> 0 there; likewise f < 0 and A < 0 below F. Consider next the curves S and S which

are defined as the ("sonic") curves on which the speed A of the phase boundary is equal,
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respectively, to the sound speeds c and c:

(20)

8: V/(&(+) &C'()/C' -+Y) = &'i) ~YR') Y

One can verify that P'(y), R'(",) < 0 and that P(y) -- P., R(-y) -. R., P'(y), R'(1) --* 0

as -y -- oo where Po, and Ro, were defined earlier in (13). The curves S and S therefore

decline monotonically with increasing If as shown in the figure. One can also verify that

the three curves S, S and F do not intersect each other; necessarily, the curves F and

Sapproach each other asymptotically as If --+ o. The region F is thus divided into four

subregions Fr, F2 , F3 and F4 by these curves. The regions F1 and F2 correspond to phase

boundaries which propagate into the high-strain phase at, respectively, intersonic and

subsonic speeds; the regions F3 and F4 correspond to phase boundaries which propagate

into the low-strain phase at, respectively, subsonic and intersonic speeds. Points on the

curves S and S correspond to sonic phase boundaries. For the material (9)-(12) under

consideration, supersonic phase boundaries cannot occur. We note that the figure has

been drawn for the case -y, > Poo though we do not assume this in the analysis.

Finally we consider the mapping ( ',If) -- (•,f) defined by (7), (8) and (14). One

can verify that the Jacobian determinant of this mapping vanishes when 'YJ^ corresponds

to a sonic phase boundary, i.e. on the curves S and S. Considering the subsonic and

intersonic regions separately, one can map each of the regions Fi into the A, f-plane;
- +

Figure 3 shows the images F1 that result from this mapping. Each of the curves S', S'

M' and M. rises monotonically as ý increases. ( The curves M' and MA' are the images
+

of the straight lines M and M. shown in Figure 2.) As . -- coo the curves 8' and M'

rise without bound; when . -- -c,, the curve S' declines without bound. In Figure 3,

Coo = V/p, fM = f(•y•-yM) and f m = I(Qw)- Note that though this mapping of

F from the 7, 7-plane to the ., f-plane is not one-to-one, when restricted to the subsonic

region F2 U £3, it is one-to-one.

4. The Riemann Problem. Wave Fans. We now formulate the Riemann problem
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for the field equations and jump conditions (2)-(3). We seek weak solutions of the differ-

ential equations (2) on the upper half of the x, t-plane that satisfy the following initial

conditions:
(x.)~vx~O={ L, VL, -- o<x < O, (1

1R, VR, 0 < x < , (,

where IL,IR, VL and VR are given constants with 71L > -- 1 and -y > 1.

Since the initial value problem described above is invariant under the scale change

t--+kt, x--*kx, we restrict attention to solutions that have this property as well. Where

such solutions exist, they must have the form -y(x, t) = ( v(x, t) = i,(ý) where • = xit.

It then follows from (2) that for such solutions, either -7 and v are both constant, or they

are the wave fans which are given by

&IMO)Pý11(22)

-)= p&¢$'2,. (23)

The left side of (22) must necessarily be non-negative for any j that satisfies (22). Thus

for the material (9)-(12) wave fans can occur only if - takes values in either the low-

strain phase or the high-strain phase. We shall speak of a low-strain fan or a high-

strazn fan according to whether j belongs to the low-strain phase or the high-strain

phase respectively. In view of (9)-(12), it follows that (22) defines a unique function

i(W)= 7(L)(ý) for -- c, < ý < oc, such that 7 (L) E (--1,jM]; -Y(L) describes the strain field

in a low-strain fan. Similarly (22) can be uniquely solved for a function j(ý) = -(H)

for -c,) < ý < coo, such that yH) C [yi, oo); E(H) describes the strain field in a high-

strain fan. Thus (22), (23) lead to the two wave fans

V = )(•), v(i) - v"((), i = L,H, where (24)

-(O()- v(t)(w0 ) = ±-- c(-y)dy, i = L, H, (25)

and ýo describes an arbitrary ray x/t = &o within the fan; necessarily •o must lie in the

interval (-cc,cc) for a low-strain fan and in the intet-•al (-c,,c,,) for a high-strain
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fail. The positive and negative signs are taken in the right side of (25) acCording to

whether the wave fan occurs in the first quadrant or second quadrant of the x. t-plane.

respectively.

Consider two rays x = ct and x = t with _C < c in the (x.t)-planie betweeni which

the field is a fan. Let ,=,ct+,t). 0 - v(ct=+.ft), += V= -,t0 denote die

limiting values from within the fan of strain and particle velocity at these rays, It follows

from (15) and (22) that

c=±c(/ c = ±c(1, (26)

and from (23) that

++

-(- v)=+ c(y)d, (27)

where the positive and negative signs are taken according to whether the fan occurs in

the first or second quadrant of the x, t-plane. respectively. Equation (27) is the analog

for a fan of the kinematic jump condition for a discontinuity in (3). Since the field within

the fan is smooth, the entropy inequality is trivially satisfied at points within it. For the

material (9)-(12). it follows from (22) that necessarily

L -a f < if fan is in first quadrant.Low-strain fan: _4 _ (28)

", ~>') if fan is in second quadrant.

High-strain fan: 1>Y if fan is in first quadrant, (29)
g n < if fan is in second quadrant.

Equations (28)-(29) are the analog for fans of equations (16)-(17) for shoc,,s. Conversely,

given numbers (,v), (-t, v) which conform to (27)-(29), one can construct a unique fan

between the rays x = ct and x = +t where cis given by (26).

The general scale-invariant solution to the Riernann problem has the form shown in

Figure 4: between any two rays x = .jt and x = 4i+lt the fields , v are either constants
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or fans; the rays themselves may or may not correspond to discontinuities. If x = S',t is

a discontinuity, the jump conditions (3) must be satisfied across it so that

S.i(b, - = -(v, -

P4 = (&(y) - -- 1,-0 , 
(30)

where (-yi, vi) and (yi-1, vi- 1 ) are the limiting values of strain and particle velocity on the

right and left respectively of this discontinuity. Let f, = If( .- 1) with f defined by (7)

stand for the driving force on this discontinuity; the entropy inequality (8) then requires

that

f, 1 j > 0. (31)

An admissible solution of the Riemann problem is a pair -y(x, t), v(r, t) of the form just

described with (30)-(31) enforced at all discontinuities.

5. The Structure of Admissible Solutions to the Riemann Problem. We shall

say that the initial data in (21) is metastable if neither of the initial strains "YL, 1R belong

to the unstable phase. Before constructing explicit global solutions to the Riemann

problem, it is helpful to establish some general results pertaining to the permissible

solution forms that are consistent with the entropy inequality.

Let (y, v) be an adm;3sible solution of the Riemann problem with metastable initial

data.

(i) The strain -y(x, t) does not belong to the unstable phase at any point (x, t)

in the upper-half plane.

This result implies that if the initial data does not involve the unstable phase, then

at no later time does the solution involve the unstable phase. We prove this claim

by contradiction. Suppose that this proposition is false. Since unstable phase fans

and shocks do not exist, there must necessarily be two phase boundaries in the (x, t)-

plane, say x = ýkt and x = ýk+lt with Ak < sk+•, such that the state between them

is constant with the associated strain -yk in the unstable phase and with neither of the
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strains ' -y ( = "y(.ýkt-,t) and tk+l = 1(ýk+lt+,t) in the unstable phase. From (7) and

(9)-(12) one sees that the driving force on the discontinuity x = ýk t is positive: the

entropy inequality (31) thus implies that ýk > 0. Similarly tile driving force on X = .;k+It

must be negative and so -k+l < 0. Thus ýk Ž_ -k+l which is a contradiction. This

establishes the proposition.

The next six propositions are concerned with the possibility of having shock waves,

phase boundaries and wave fans adjacent to each other. When addressing fans, it is

sufficient for our purposes to restrict attention to fans which do not terminate on discon-

tinuities. Thus in the propositions that follow, if x = .kt and x = ak+it are two rays in

the (x, t)-plane between which the field is a fan, these two rays will be assumed not to

be discontinuities. Features of fans which do terminate at discontinuities can be deduced

from the following results by suitable limiting arguments.

Let (y, v) be an admissible solution of the Riemann problem with metastable initial

data.

(ii) Let x = ikt, x = SA+lt, x = Sk+2t and x = Sk+A3, be four rays in the same

quadrant of the (x, t)-plane. If the field in the interior wedge hk+lt < x < s,+2t

is constant, then the field in the other two wedges cannot both be fans.

(iii) Let x = Skt and x = Ak+it be two rays in the same quadrant of the (x,t)-

plane between which the field is constant. Then these two rays cannot both be

shock waves.

(iv) Let x = .kt and x = 4k+1t be two rays in the same quadrant of the (x, t)-

plane between which the field is constant. Then these two rays cannot both be

phase boundaries.

(v) Let x = .kt, X = Sk+it and x = hk+ 2t be three rays in the same quadrant

of the (x, t)-plane. Suppose that the field between any two of these rays is a

fan. Then the third ray cannot be a shock.

(vi) Let x = Skt, X = ik+lt and x = 4k+2 t be three rays ,, the same quadrant

13



of the (x,t)-plane. Suppose that the field between the two slowest rays is a

fan. Then the remaining ray cannot be a phase boundary. (The converse case

is possible: if the field between the two fastest rays is a fan the remaining ray

may be a phase boundary.)

(vii) Let x = skt and x = $k+it be two rays in the same quadrant of the

(X, t)-plane. If the slower ray is a shock, then the faster ray cannot be a phase

boundary. (The converse case is possible: if the faster ray is a shock, the

slower ray may be a phase boundary.)

The first three of these propositions state that two wave fans, two shock waves and

two phase boundaries cannot be adjacent to each other. The next one states that a

fan and a shock cannot be adjacent to each other. On the other hand according to

proposition (vi), a fan and a phase boundary may be adjacent to each other provided the

phase boundary is subsonic. Similarly a shock and a phase boundary may be adjacent

to each other provided the phase boundary travels more slowly than the shock.

It is clearly sufficient to prove these results in any one quadrant of the upper-half of

the (x, t)-plane and so we shall consider only the first quadrant. Thus in each of these

propositions we have 0 < k < k+1 < 4+2 < k+ 3.

To prove proposition (ii), suppose that it is false so that the field in 4kt < x < 4+ 1 t

and 4k+ 2t < x < 4Sk+3t are fans while the field is constant in the intermediate wedge. It

is not possible that one of these fans is a low-strain fan while the other is a high-strain

fan, since such fans belong to different phases and so must necessarily be separated by

a phase boundary. For two fans of the same type, (22) directly shows that they must in

fact be smoothly connected to each other to become a single fan with 4k+1 = 4k+2. This

contradict. the assumption that sk+l < sk+2. The assertion (ii) is thus proved.

We now turn to the proof of proposition (iii). Suppose that the proposition is false

so that x = ikt and x = .'k+lt are both shocks and the field between them is constant.

Note first that a low-strain shock cannot be adjacent to a high-strain shock, since they

must be separated by a phase boundary. Suppose that both x = .kt and x = 4k+lt are
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low-strain shocks. The strain and velocity field thus have the form

SYk-1, Vk1l, X = I kt-,

.y(x,t),v(xt) = < X < k+lt, (32)

Yk+l, Vk+l, X =` k+lt+,

where Nk-1, -tk and "Yk+l are distinct and all three belong to (-I, 1,f]. According to (31),

the driving forces acting on these two shock waves must be non-negative. With the help

of (7) one finds that this implies that Yk-1 < "Yk < Yk+l. Since &'(-1) > 0 and a"(1) < 0

on (-1,-1M), this, together with the fact that -1 < _Yk-1 < Ik < "Yk+' < "IM, implies that

6-fk &(J) &(-Yk) (3< (33)

'k+1 - 7k Yk - yk-1

Equations (30) and (33) then yield sk > .k+l which is a contradiction. In a similar way.

we can prove that two high-strain shocks cannot be adjacent to each other. This proves

proposition (iii).

Propositions (iv) and (vii) may be established by arguments that are very similar to

the above.

Next we turn to the proof of proposition (v). Suppose that it is false. Note first that

a low-strain shock cannot be adjacent to a high-strain fan (or vice versa) since they must

be separated by a phase boundary. Suppose that x = .kt is a low-strain shock and that

the field between the rays x = sk+1t and x = .k+2t is a low-strain fan:

"N-k1, Vk1, X = 4kt-,

2'k, Vk, Skt < X < 4k+1t,

"Y(X,t),v(z,t) = (34)

7(')(x/t), V' )(4 , Sk+lt < X _< 4+2t,

"tk+2, Vk+2, X = Sk+2t+,

where "Yk-1, yk, and -Yk+2 all lie in the low-strain phase and .y(L) is the strain field in

a low-strain fan given by (24). For the material (9)-(12), equation (22) and the fact

that sk+1 < 4k+2 implies that -yk > -Yk+2. Next, the entropy inequality (31) requires

the driving force f(-Yk-],Yk) at x = 4kt to be non-negative; by (7), this implies that
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"Yk-1 < "Yk. Since &'(-y) > 0 and &"(1) < 0 on [-tk-1, 7k], this, together with the fact that

-1 < Yk-i < yk -- •-y implies that

lk - N7-1

Equations (15), (30) now yield .5 > Sk+i which is a contradiction.

The remaining cases where x = .k+2t is a low-strain shock and the field between the

rays x = ýkt and x = •k+lt is a low-strain fan, and when the shock ,nd fan are both

high-strain ones, can be treated similarly. This establishes proposition (v).

The proof on proposition (vi) is entirely analogous.

The preceding results imply that the form of admissible solutions to the Riernann

problem with metastable initial data is in fact much simpler than that described in

Figure 4. Note that the results (iii)-(vii) depend critically on the entropy inequality (31).

6. Explicit Solutions to the Riemann Problem. The results established in the

preceding section allow one to determine all admissible solutions to the Riemann problem

in the case of metastable initial data. From here on we shall consider only the special

Riemann problem in which the initial strains IYL and _YR are both in the low-strain phase.

and 1R is smaller than UL:

"7L E (--1, YM, 'YR E (--1,yM], YR < IL- (36)

At the initial instant, the entire bar is in the low-strain phase. At a later instant, a

particle of the bar may or may not change its phase. It is convenient in the following

analysis to consider these two cases separately.

(i) Solutions involving no phase change. In this case, the solution does not involve

any phase boundaries. In view of the first proposition in Section 5, neither does it involve

the unstable phase at any time t > 0. Next, in view of propositions (ii), (iii) and (v), the

solution y, v can only involve a single low-strain shock wave or a single low-strain fan in

each quadrant of the upper half of the x, t-plane. Thus the solution must have one of the

four forms shown in Figure 5(a)-(d).
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(i(a)) Solution with two shock waves. Figure 5(a). Consider a solution having the

form shown in Figure 5(a):

"IL,VL, --00 < x < it,

'Y, v = 1 =t, St < X < ý2t, (37)

"7YR, VR, s 2 t < x < oo,

in which 'I, v, . 1 and -2 are to be found such that , E (-1, "t] and • < 0 < 4,2.

The jump conditions (30) and the entropy inequality (31) at each of the two shock

waves require that

- &~~(-YR) 0
-(Vj- MIR - Y) i > 1, (38)

-(V - VL) U lZ r), P - ('Y -- (L) I (9
S< 7L-(39)

The inequalities in (36), (38), (39), together with the requirement that -Y be in the low-

strain phase, imply that

-I < 7 < YR. (40)

Combining (38)-(39) yields

VR - VL = H(), (41)

where H(7) is defined on (-1, yR] by

11(y)-Y [ R) -
8 Y]~R-O7/P - I&() - YL)](-Y - -YL)/P. (42)

It can be verified that H(-y) increases monotonically on (-1, U] from the value -oc
at -t = -1 to the value HR = H(YR) at -y = "YR; see Lin [19]. Thus if the initial

data is such that -0o < vR - VL < HR, there is a unique root If of (41) in the range

-1 <1 <-YR(( -yM). The remaining unknowns v,.•l and i2 are then given immediately

by (38) and (39).
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Thus, there exists a unique admissible solution of the form (37) corresponding to

Figure 5(a) if and only if the given initial data (21), (36) is such that -OC < '•R - t'L <

HR.

(i(b)) Solution with a shock wave and a wave fan. Figure 5(b). Consider next a

solution of the form shown in Figure 5(b):

IL,VL, -- < x <

SV, st<x < ct,

Y,v = (43)

i(X/t),i (x/t), Ct < X <_ CRt,

1R, VR, CRt < X < OC,

where Y, v .•, c and CR are to be determined such that I C (-EYAII and . < 0 < c < CR.

The functions j(x/t) and ý(x/t) are the strain and velocity fields pertaining to a low-

strain fan and are given by (24)-(25).

At the shock wave x = Rt, the jump conditions (30) and the entropy inequality (31)

must hold:

V = VL- .P('i -L) If 7 <(L. (44)

Turning next to the fan, and by using (26)-(28), one finds

-(V - vR) = jc(-y)d-, CR = c(-YR), C = cO)), Y > -YR. (45)

Equations (44)-(45) may now be combined to yield

vR - VL= H(-Y) (46)

where
H(•,) - [L) -+ 6{(")]('fL - 'y)/p J c(e)de, "R tL- (47)

One can verify that H(y) increases monotonically on [-YR, -IL] from the value HR - H('YR)

at -Y = YR to the value HL = H(-/L) at -y = -YL; see [19]. Thus if the ii:itial data (21),
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(36) is such that HR < VR - VL < HL, equation (46) yields a unique root - in the interval

"IR < I < IL. The remaining unknowns v, s, c and CR are then given by (44), (45).

Thus, there is a unique admissible solution of the form (43) corresponding to Figurfe

5(b) if and only if the given initial data (21), (36) is such that ttn < VR - VL < IlL.

(i(c)) Solution with two wave fans. Figure 5(c). We seek solutions in the form of

Figure 5(c):

'YL, VL, -- CX < X < CLt,

51(X/t),ml(x/t), CLt < X <_ Ct,

j'v= 7 c't < X < c (48)

<2 (Xt), i 2 (X/t), Ct z < CRt,

11R, VR, cCt < X < OC,

where 7, V, CL, c', c and CR are to be determined such that It E (-1,-yM] and CL <

C'< 0 < C < CR. The functions $j, v1, i2, •2 , are the fields that are appropriate to a

low-strain fan and are given by (24)-(25).

The analysis of this case is similar to that of the preceding one. One finds that there

is a unique admissible solution of the form (48) corresponding to Figure 5(c) if and only

if the given initial data (21), (36) is such that HL < VR - vL < HMf where

H(7I) j c(-y)d-I + c(y)d7, 7L <_7 • 7M, (49)
'R JYL

and HL =- H(-YL), HM = H(jm).

(i(d)) Solution with a shock wave and a wave fan. Figure 5(d). For initial strains in

the low-strain phase with 71R < UL as considered here, one finds that solutions having

the form of Figure 5(d) do not exist. In the reverse case 7R > _tL, one finds that such

solutions do exist in place of solutions of the form in Figure 5(b) which now do not exist.

It is readily seen from (42),(47) and (49) that H(j) is continuous at 7 = 7R and

7 = UL. In the respective limits VR - VL --* HR-, and VR - VL -+ HR+, the solution
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forutas shown in Figure 5(a) and Figure 5(b) coincide. The limiting solution involves a

single shock wave traveling left and has no other shock waves. Similarly, the solutiont

forms 'n Figure 5(b) and Figure 5(c) coincide in the respective limits VR - CL = ttL-.

VR - VL = HL+. In this case the solution involves a single rightward moving wave fan.

In summary, when initial data (21), (36) is such that -00 < VR- VL < 1.,. it has

been shown that there is a unique admissible solution that involves no phase change to

the Riemann problem. Further discussion of these solutions is postponed until subsection
(iii).

In order to find solutions when the initial data is such that VR - VL > H'M we must

consider solutions which involve a phase change.

(ii) Solutions involving a phase change. If a solution involves a phase change, the

results (iv), (vi) and (vii) of Section 5 show that each quadrant of the upper-half of the

(x, t)-plane has precisely one phase boundary together with either one shock wave or one

wave fan. Moreover, each phase boundary is necessarily subsonic so that the speed of the

shock wave or wave fan is greater than that of the phase boundary. Thus the solution

must have one of the four forms shown in Figure 6(a)-(d).

(ii(a)) Solutions with two phase boundaries and two fans. Figure 6(a). Suppose that

the solution has the form shown in Figure 6(a):

UL,VL, - 00 < X <_ CLt,

ji(X/t), ýi(X/t), CLt _ X • CAt,

"YA,VA, CAt • X < Slt,

y, v= Iv1 st<x<s 2t, (50)

++ +'Y, v, ý2t < X <_ +ct,

VX/t) +2 (X/t), Ct < X < CRt,

"Y, VR, cRt 5 x < c0,

where 7A,VA, +,v, Yv, cL, CA, c, cR,. 4I and 2 are to be determined such that ^tA,+ E
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(--1,"/] •Y E [ym,,C)and CL < CA < 1 < 0 < S2 < C < CR. The functions

Xtl~/t),I(X/t),=t2(X/t),t,2(x/t) are the fields appropriate to a low-strain fan and are

given by (24)-(25).

The jump conditions (30) at the two phase boundaries lead to

+ + - ) _ _ --_ (51)
P(+

&(11-A)

V = VA -- P,• - >), • = -. (5 I (A), (52)

while the requirements (26), (27) at the two fans give

+

= C(C), cR = c(41R), -(+ - VR) = c(yd', (53)

CA = -C(-tA), CL = -C(-YL), VA - VL = IA c(-t)d-y. (54)
IL

The roots of these equations are subject to the restrictions imposed by the entropy in-

equality (31) at each phase boundary, the inequality (28) at each fan, and the requirement

that the strains belong to either low-strain phase or high-strain phase as appropriate.

These restrictions lead to the following inequalities

5 0• , f(YA, Y) < 0, (55)

+Y > 7YR, 7A > 'YL, (56)

-1 < < ., -1< 'YA < 11M, 7 >! 'Y. (570

The 10 equations (51)-(54) are to be solved for the 12 unknown quantities listed below

(50). Therefore, one anticipates that when there exists a solution, there would in fact be

a two-parameter family of solutions; see James [12]. For reasons of algebraic simplicity,

we assume that

2 = -. - , (58)
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where . > 0. This assumption does not change the essential characteristics of the so-

lutions, but leads to a considerable simplification in the analysis. In fact, it is possible

to show (as in Abeyaratne and Knowles [3]) that (58) necessraily holds once a kinetic

relation is imposed. One now expects a one-, rather than a two-, parameter family of so-

lutions. In what follows, the strain Y snall be treated as this parameter. The assumption

(58) also leads to "tA = Y+

It follows from (55)-(58) and the requirement 0 < . <+ in (50) that

C(i > f o, Y ý '_ > -YL, &M> &()(59)

necessarily hold. These inequalities define a region D1 C F3 in the Y, -plane; Figure 7

displays this region in the case

Il > >Poo >L, I TR > Roo, (60)

and for reasons of definiteness we shall frame our analysis from hereon for this particular

case; the analysis can be trivially modified to handle the case when the ordering of the

strains differs from (60).

By combining equations (51)-(54), one can reduce the question of their solvability to

the following problem: given "Y, find a root ' with (%$) E D1 of the equation

vR - vL = G(Y), (61)

where G is defined for ( t, I) E D, by

+ +

G(7, 4) jc(y)d-y ±+ c(-I)d7y + 2V[&('+) - &Q)( )P. (62)

The curves AD, AI and CD of Figure 7 which comprise part of the boundary of the

region D1 were defined previously in (18)-(20). At each fixed -1 > -Y03, the function G

in (62) increases monotonically with increasing ^f. Therefore, for each Y _Ž 1/o3, (61) can+

be solved uniquely for 'Y provided UR - VL lies in a suitable range: for _Yo3 < Y • -1)3,

this range is G(-t,Q(11)) _ vR - VL •_ G(C),T(Y)); for y7 _ < -yj, it is G(Y,Q(Y)) _

VR - VL < G(',P(Y)); and for Y > -yi, it is G(Y,<YL) < VR - VL < G(f, P(-)). Here
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t(> ",m) is the strain-level at which the driving force f(.T, YL) vanishes, see Figure 7.

Once f has been thus determined, all of the other unknowns can be found in ternis of

i and the initial data without further restriction. Further discussion of this solution is

postponed until subsection (iii).

(ii(b)) Solutions with two pha-c boundaries, one shock wave and one wave fan. Figure

6(b). Consider next solutions having the form of Figure 6(b):

"YL, OL, -00 < X < 81 t,

YAVA, slt < X < s 2 t,

%I V, ý2t < X < kt

Y, v = (63)
,v I, S 3 t <x X < Ct,

ct < X < CRt,

YR ,VR, CRt < X < 0o,

where 7.4, VA, 7, v, , v, S1 , s 2, s 3 , c and cR are to be determined such that -1A, f E (-1m]

f E [moo) and ii < 82 < 0 < 3< 'C <C CR. The functions ", correspond to the fields

in a low-s'rain fan and are given by (24)-(25).

The analysis of this case is similar to the previous one and so we merely state the

results. Again, there is a two-parameter family of solutions in general, and for algebraic

simplicity we assume that A3 = - = , thus reducing it to a one-parameter family of

solutions.

The strains (I, 4) must lie in the region D2 C F3 shown in Figure 7. Given the strain

Y, one is to find a root -fwith (I, 1Y) E D2 of the equation

VR - VL = G(A-), (64)

where G is defined by
+

G(-y, ^'0 &- -+Y1(t -+ fL ~ )p +, c(-y)d-y

+ (- &(•)]Y- ")0p, for (5, 0) E D2 . (65)
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At each fixed -Y > y1 the function G increases monotonicallv with -. Therefore for

each Y in the respective ranges 21j < 7 < "YK and 2 > -t,, (64) can be uniquely solved

for ^ provided G(7, Q( 1)) < Vt - VL < G(c, _YL) and G(7,-IR) < Vt? - IL < GV,,)

respectively. Here IK(> "7,) is the value of strain at which the driving force 1(2K, R)

vanishes, see Figure 7. Once I has been thus determined, all of the other unknowns can

be found in terms of If and the given initial data without further restriction. Further

discussion of this solution is postponed until subsection (iii).

(ii(c)) Solutions with two phase boundaries and two shock waves. Figure 6(c). Hlere

we seek solutions in the form of Figure 6(c):

"[L,VL, -00 < X < s 1 t,

"_A, VA, ýlt < X < ý2t,

711) = v, . 2t < x < k3t, (66)

+ +
"-, + V+ • 3 t < x < . 4 t,

"YR, VR, s4 t < X < 00,

in which IyA,VA,2',V,'5,Vsl,s2,S3, S4 are to be determined such that IA, E (--1,yE],

I/E [7,, ) and hj <h2 •50 < - 3 <-4.

The analysis of this case is again similar to the previous ones. There is again a two-

parameter family of solutions in general, and for algebraic simplicity we assume that

.3 = - , thus reducing it to a one-parameter family of solutions.

The strains ( t, 7) must lie in the region D3 C F3 shown in Figure 7. Given the strain

Y, one is to find a root I with (7', -) E D3 of the equation

V V - VL G(7,2') (67)

where G is defined by

G( f, 6'()](L - - /[&IyR) - &'(7)](YR -

+ 2V[&(Y-) /p, for('Y, ^+) E D3. (68)
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- 4+

At each fixed , > 1K- the function G increases monotonically with increasing ", and
+

therefore (67) can be uniquely solved for + provided <((; Q()) G (,.- -L < G(; , ,

Once ) has been determined, all of the other unknowns can be found without further

restriction.

(ii(d)) Solutions with two phase boundaries, one fan and one shock wavis. lFigqtt

6(d). One can show that solutions having the form shown in Figure 6(d) do not exist for

the "nitial data (21), (36) being studied here. Such solutions do exist in thc case u > .'

in which event solutions of the form uf Figure 6(b) do not exist.

It is clear from (62), (65) and (68) that G is continuous across the lines IJ and KL

in the (,-,))-plane shown in Figure 7. In the respective limits, for - > -,I, VR - IL

G(Y, -YL--) and vR- VL -- G(. ,IL+), the solution forms shown in Figure 6(a) and Figure

6(b) coincide. This limiting solution involves a wave fan traveling right and two phase

boundaries. Similarly, the solution forms in Figure 6(b) and Figure 6(c) coincide in the

limits VR-VL -+ G(I, IR-) and VR--VL -+ G(O-, R+). In this case, the solution involves

a leftward moving shock wave and again two phase boundaries.

7. Summary of all solutions. Non-uniqueness. In the preceding section we

constructed all solutions to a Riemann problem and it is useful to examine these solutions

on the (0, VR - VL)-plane. Note that I is the final strain in the bar at large time while

VR--VL is part of the given initial data. For solutions that involve a phase change, we map
the regions D1, D2 and D3 of the (5, i)-plane into the respective regions D, D' and D'the~~~ ~ ~ ~ rein D- 2 idDk-th

in the (1,vR - VL)-plane by using the mapping VR -- VL = G(Y1, 1), = Y. The resulting

regions are shown hatched in Figure 8. The boundary curves A'D'. D'C', A'B', 'J' and

K'L' are the images of the respective curves AD, DC, AB, IJ and KL, and are define by

yR - L GV,T(CY)), vP - VL = G(7, P(CY)), LR -- V = G('t,Q(-)), tVR - VL = G(1,!L)

and VR - vr = G(O, '-R), respectively.

The solution corresponding to a point in D' involves two phase boundaries and two

wave fans (Figure 6(a)). At a point in D' the solution involves two phase boundaries, one

wave fan and one shock wave (Figure 6(b)), while in D' it involves two phase boundaries
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and two shock waves (Figure 6(c)). It is useful to note that the solution corresponding

to a point on the respective curves A'D', D'C' and A'B' involves phase boundaries that

are stationary, sonic and dissipation-free respectively.

Solutions which do not involve a phase change can also be described on this plane by

plotting, for each type of solution, the curve VR - VL = H(Y). The result is the curve

P'Q'R'S' shown in Figure 8.

Each of the curves P'Q'R'S', A'B', A'D', D'C', I'J' and K'L' can be shown to be

monotonically increasing. The figure reveals two distinct types of non-uniqueness. For

all initial data such that VR - VL < HM there is a unique admissible solution that involves

no phase change. On the other hand, when the initial data is such that VR - vL > Go

G(-yo0, -103), there is a one-parameter family of solutions all of which involve a phase

change; the lack of uniqueness here arises because of the undetermined velocities of the

phase boundaries. For initial data on the intermediate interval HMf > VR - VL > Go

both of these types of solutions are available, in one of which the bar ultimately changes

phase, while in the other it does not.

8. Kinetics and nucleation. Uniqueness. The propagation of a phase bound-

ary is controlled by a kinetic relation which, in the simplest models, is a constitutively

prescribed relation between the driving force f acting on the phase boundary and its

propagation speed .:

f(t) = 00(t)). (69)

The continuum theory does not provide an explicit expression for 0; this is obtained

through suitable micro-mechanical modeling. It is sufficient for our purposes to merely

assume that 0 is a continuous function on (-cO, cO) that increases with ,• and that

the graph of f = €(.) is a curve that lies in the region ' Ut1 F1 described previously of

the (.,,f)-plane; see Figure 3. The entropy inequality (31) implies that 6(4)ý > 0 and,

assuming 0 to be continuous, that €(0) = 0.

The kinetic relation controls the propagation of an existing phase boundary. A nucle-

ation criterion is needed in order to signal the onset of a phase transformation when the
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bar involves only a single phase. We assume that the transformation from the low-strain

phase to the high-strain phase is nucleated whenever there exits a solution, corresponding

to the given data, with the associated driving force f at least as great as a given critical

value f,,; the parameter fc, > 0 is also determined by the constitutive details of the

material. Once the nucleation criterion indicates that we should consider solutions that

do change phase, the kinetic relation selects the particular one of these solutions that is

appropriate.
+- +

The nucleation criterion f( ,-1) = f, describes a curve N' in the Y, '-plane that lies

in the hatched portion F3 in Figure 7. For clarity of the figure, this curve shall not be

displayed; it can be readily verified that it has one end at a point N on AD, and declines

monotonically as I increases to 3-- R, as oo. The coordinates of the point N are

found by solving the pair of equations

ff 7 , 8(y) = f("); (70)
- +-1

let (Y,., e) be this point and let G, = G(Th-,, Y,) be the corresponding value of G at

this point. The image Al' of the curve A in the (VR - VL, i)-plane is a curve in the

hatched region shown in Figure 8 that rises monotonically commencing at a point N' on

A'D'. Again, for clarity of the figure, this image N' shall not be displayed. The ordinate

of the point N' is Ge,.. Thus according to the nucleation criterion, a solution with a phase

change is selected whenever VR - VL > G, a solution without phase change is selected

when VR - VL < Gcr.

For •R - VL ? G•, we must consider the 1-parameter family of solutions that involve

a phase change. In order to select the relevant solution from among this family, we

begin by applying the kinetic relation (69) to the phase boundaries x = Rt in each of the

solutions in Figure 6(a),(b) and (c); kinetic relation at the other phase boundary x = -St

holds automatically. On using (7) and (14) in the kinetic relation (69) and ensuring that

S > 0, leads to / + -)
7+ _ = K( for ? >t03. (71)Sp=(y -3)
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This describes a curve K in the %,t-plane that lies in the region 1'3 (the union of the

hatched portions in Figure 7); it commences at the point A and declines monotonically

with K(1) --+ Ro as )--4 oc. When mapped from here to the (tR - VLf)-plane. this

yields the curve V' defined by VR - VL = G(5, K( )) _ 03, see Figure 8. This

curve commences at the point A' and the monotonicity of the kinetic response function

Sensures that it rises monotonically without bound.

Thus since V' increases monotonically for any given VR - t'L > G,,, there is a unique

strain i(>'1c,) which satisfies the kinetic relation.

Thus, in summary, we have shown that for the metastable initial data (21), (36), the

Riemann problem has a unique solution that is consistent with the kinetic relation and

the nucleation criterion. For initial data such that VR - VL < G, this solution involves no

phase change and has the form given by Figures 5; the bar commences in the low-strain

phase and remains there for all time. For VR - VL , , the solution involves a phase

change and has the form given by Figures 6; in this case the bar, which was initially in

the low-strain phase, transforms eventually to the high strain phase. In either case, the

eventual strain in the bar is -i and can read off Figure 8.

In closing, we note that some solutions to the present problem involved phase bound-

aries that were subsonic while others involved sonic phase boundaries (the latter cor-

respond to points on D'C' in Figure 8). In the present analysis the kinetic relation

was imposed on both of these types of phase boundaries and this leads to uniqueness.

If the kinetic law had been applied only to subsonic phase boundaries, then solutions

corresponding to points on both curves K' and D'C' would be allowed. In this case

the Riemann problem corresponding to given data would have a unique solution for

vR - VL < HM (see Figure 8) but for vR - VL >_ HM the problem would have two solu-

tions, one satisfying the kinetic relation and the other involving a sonic phase boundary.

This was first observed, in a particular setting, by Truskinovsky [18]; he takes the view

that ihe kinetic relation should only be applied to subsonic phase boundaries and sug-

gests that the accompanying non-uniqueness (for vR - VL Ž_ Hm in the present setting)
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describes an instability.
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